WELCOME TO

“We Duplicate what We Simulate.”™
RS Serving YOU!!

- Company Profile Page
- Product Line
- New Product Announcements
- Website with Search Feature
- On Line Catalog & QPL
- RFQ forms – Submit On line
- Technical Corner Articles
- Newsletters
- Quality Commitment
Company Profile

Founded in January 1981 with the mission of designing and producing high quality RF and Microwave filters

• Developed an approach to implementation of filter networks involving the use of evanescent modes of propagation that offered a good combination of size and insertion loss, not achievable with any other method current at the time.

• Since our founding, RS has developed:
 • unique lumped element networks with symmetrical response
 • dielectric resonator designs (1 MHz bandwidth with a center frequency of 8 GHz!)
 • compact high power, low-loss notch filters, the smallest possible multiplexers, wide passband and stopband filters combined with high power capability (1-4 GHz passband, stopband to 20 GHz, 1 KW operation)
 • blind-mate filters (as small as drop-in designs) for high isolation applications, Bessel-Thompson world standard filters (our OR series) for use in optical communication systems, and
 • a host of other unique products for system application including: in-line bandpass filters with finite transmission zeroes, reduced size high power filters, wide band high power filters, and other developments.
 • a series of unique multimode filters employing both waveguide and dielectric resonators, in a configuration allowing for pseudo-elliptic responses but with in-line physical configuration, coupled with high power operation and wide stopbands.

New Filter Topologies include the use of multiple waveguide modes, in “bypass” configurations, enhancing the in-line configurations with additional transmission zeros for very sharp rejection characteristics.

We are the Major Supplier of filters for the world-wide LINK-16 programs, a high power spread spectrum military communication link interfacing with TACAN, IFF, other data links, and other navigation/communication systems.

We are the Largest Supplier of High Power Notch Filters in the world: Major Supplier on MIDS, JTIDS, ASPJ, AESA, ALQ-172 LAMPS, ALR67 (ASR), Rapport III, SLQ32, GPN, SPS- 48, GBR, AMRAAM, SM-2, AEGIS, TTNT, F-22, F-35…. We utilize the latest computer-aided design techniques with standardized mechanical approaches to minimize size, cost, and delivery time while optimizing performance.

Approved to the AS9100 Quality System. All of our assembly and tests are in accordance with MIL-STD-2000 or 2000A. Our Assemblers are certified to J-STD-1000. Everyone in the company is certified to ESD standards.

Our manufacturing system is LEAN. We perform environmental testing on the majority of our products, including high power, temperature-altitude and leak resistance.

Our filters and multiplexers are on many of the U.S. government QPL or NSN lists as standard approved items.

Our filter products have been under the sea, on the ground, in tanks, in fighters, bombers, missiles, and satellites. We are considered “best of breed” in small size or high power.
Product Line

Filters - 1 MHz to 50 GHz
- High Power
- Low Loss
- Blind-Mate
- Drop In
- Dielectric Resonator
- Notch Filters
- Coax or Waveguide
- Tunable, Higher Order Mode

Multiplexers - 1 MHz to 50 GHz
- Contiguous
- Non-Contiguous
- Switched

Subsystems - 1 MHz to 26 GHz
- Combinations, including:
 - Filters
 - Circulators
 - Amplifiers and Switches
Stars of the Line (Current)

P/N 30431C-6 (3/31/18)
High performance diplexer for Tactical Targeting Network Technology (TTNT) applications. Successfully tested to withstand power up to 325 W peak with 50% duty cycle. The low loss performance in the passband and the wide upper stopband (extending up to 10.6 GHz and 13 GHz for the lower and upper channels, respectively) are obtained by properly dimensioning the various resonators. High close-in rejection above the lower passband (larger than 30 dB rejection in 1560-1590 MHz) is also obtained.

P/N 61221C-1 (4/13/17)
A high power diplexer developed for applications at the low end of the UHF frequency band. Obtains optimum insertion loss and isolation performance. Pseudoelliptic characteristics are obtained for both RX and TX channels with superior performance in terms of resonators quality factor and temperature stability by implementing RS Microwave’s patented composite resonator concept.
An HF low-pass filter implementing advanced techniques and hybrid technologies in order to obtain high power capability and a wide spurious free stopband. The filter passband extends up to 30 MHz, where less than 0.5 dB insertion loss is guaranteed. An extreme close-in rejection of 70 dBc is provided at 37 MHz, only 5 MHz away from the upper edge of the passband. The stopband extends up to 3600 MHz. Withstands 500 W of continuous power at its input port.

A high power diplexer for applications at the low end of the UHF frequency band. The unit employs innovative techniques in order to obtain optimum insertion loss and isolation performance. Pseudoelliptic characteristics are obtained for both RX and TX channels, while superior performance in terms of resonators quality factor and temperature stability is also obtained.
Stars of the Line: Continued

PN 30281C-1,-2 unique K- and Ku-band filters with extremely narrow passband (less than 0.025%) and wide spurious free stopband (up to 50 GHz). Such a distinctive performance is accomplished by properly combining overmoded cavities with single-mode and evanescent mode cavities. RS Microwave manufacturing experience and technological expedients are crucial to obtain excellent mechanical and thermal stability for these innovative products implementing such extreme filtering functions.

P/N 53681C is a 5-channel multiplexer designed and built for satellite application. Rugged and light weight, it has 5 passbands covering UHF to S-band - a 10:1 frequency range; but, the concept is adaptable to applications allowing for additional channels of differing widths. The design combines evanescent mode filters and high Q-factor lumped components into a pseudo-elliptic complementary combining network, resulting in low-loss/high-isolation performance with wide, spurious-free stop bands and high power capability. The photograph shown illustrates an assembly incorporating two of these multiplexers in one package.
Stars of the Line: Continued

- PN 20441CD Very low loss Ku-Band diplexer employing high Q-factor cavities with pseudo-elliptic response, yielding high channel isolation, maximum passband width & superior insertion loss performance.

- Low Loss Triplexer P/N 20521CT - a very Compact & low loss triplexer suitable for data-link applications in L-, S-, and C-band. The spurious free stopband of this unit extends up to 16 GHz, so as to provide high isolation to other commonly used frequency channels in Ku-band (see our P/N 20441CD)

- KW level Power Amplifiers in RF frequency range 10 MHz to 5 GHz.

- P/N 03331C series high power low loss filters with wide passband & wide stopband. Frequency spectrum 900 MHz – 18 GHz.
Stars of the Line: Continued

- Diplexer designed to combine 30 to 180 MHz with 180-3000 MHz (P/N 52352BD)

- 91122A-1 Right-angle transition vers. of 60661A-3 JTIDS/MIDS HP bandpass filter

- SPS-49 Radar Band Rejection Filter (P/N 50822B-2)
- Low-Loss High Rejection Bandstop (P/N 50151B-2)
Stars of the Line: Continued

- **Diplexer**
 PN 80431AD (4/98)

- **Diplexer/Combiner**
 P/N 80501AD3 (12/98)

- **Waveguide**
 Bandpass Filter
 P/N 62021A-2 (3/99)

- **Diplexer GPS High Power**
 80501AD1 (4/99)
Stars of the Line: Continued

- Waveguide Bandpass Filter 91741A-2 (4/00)
- GPS Dual Triplexer 92051AT (5/00)

- Lowpass Cable Filters P/Ns 90371A-1 &2 (9/00)
- Fixed Dual Notch Filter P/N 90711A-3 (11/00)
Stars of the Line: Continued

Switched Dual Notch Filter PN 90711A-6 (8/01)

MIDS/JTIDS Diplexer 01091BD (11/01)

Compact Diplexer PN10511-2 (3/26/03)

Low-Loss High Rejection Bandstop Filter 50151B (10/05)
Our Stars (Traditional)

- Lumped Element & Printed Circuit Filters
- Switched Filter with Blind Mate Connector (P/N 61461a-3 4 channel)
- Coupled Cavities
- Dual Notch Filters (JTIDS Program)

4/28/2018
Our Stars (Traditional)

- 28 GHz Notch Filter (P/N 60733A-4)
- High Power Compact Coaxial Notch Filter (P/N 22761-2F)
- Multiplexer
- High Power Bandpass Filter MIDS/JTIDS (P/N 60661A-3)
New Product Announcement

RS Microwave Company, Inc.

New Product Announcement

PIN 61700B-3

JTIDS/MIDS Band Rejection Filter

This PIN 61700B-3 is the latest in the RS Microwave Band Rejection filter designed for receiving codes interference problem with the JTIDS/MIDS Band. This filter has very narrow transition slope from passband to stopband (6 MHz is typical). The unit is constructed as an elliptic air-in-air line design, achieving high unloaded Q, which minimizes the insertion loss while maximizing the stopband attenuation.

Specifications

- **Pass Bands:** DC - 800 MHz, 1227-3000 MHz
- **Average Passband Loss:** -1 dB Max.
- **-3dB Passband outof points:** 860 and 1227 MHz
- **Passband SWR:** 1.8 : 1 (Typical)
- **Min. -36 dB Rejection:** 860 - 1226 MHz
- **Power Limit:** At least 60 W peak, 25 W Avg.
- **Temperature Range:** -50°C to +60°C

TEST DATA

P/N 62362BD

Diplexer

Part Number 62362BD is a diplexer designed to combine 58 to 150 MHz with 180-2000 MHz. The unit provides high isolation and is typically engineered for multiplier products.

Specifications

- **Low Channel**
 - Type: Bandpass Filter
 - Minimum 6 dB passband: 30-177 MHz
 - Maximum loss from 177 to 183 MHz: -7 dB (crossover region)
 - Maximum 2:2 VSWR: 30-177 MHz (1.75 dB typical)
 - Maximum 1 VSWR: 30-177 MHz (1.75 dB typical)
 - Maximum 2 dB rejection: DC-150 MHz
- **High Channel**
 - Type: High Pass Filter
 - Minimum 6 dB passband: 180-2000 MHz
 - Maximum loss from 177 to 183 MHz: -7 dB (crossover region)
 - Maximum 2:2 VSWR: 180-2000 MHz (1.75 dB typical)
 - Maximum 1 VSWR: 180-2000 MHz (1.75 dB typical)
 - Maximum 2 dB rejection: DC-150 MHz

TEST DATA

4/28/2018
New Product Announcements

P/N 53681C

Multiplexer

P/N 53681C is a 5-channel multiplexer designed and built for satellite applications. Rugged and light weight, it has 5 passbands covering UHF to S-band - a 10:1 frequency range; but, the concept is adaptable to applications allowing for additional channels of differing widths. The design combines evanescent mode filters and high Q-factor lumped components into a pseudo-elliptic complementary combining network, resulting in low-loss/high-isolation performance with wide, spurious-free stop bands and high power capability.

<table>
<thead>
<tr>
<th>Channel</th>
<th>Parameter</th>
<th>Limit</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Passband Freq</td>
<td>MHz</td>
<td>430</td>
<td>670</td>
</tr>
<tr>
<td>2</td>
<td>Passband Freq</td>
<td>MHz</td>
<td>727.5</td>
<td>947.5</td>
</tr>
<tr>
<td>3</td>
<td>Passband Freq</td>
<td>MHz</td>
<td>1065</td>
<td>1685</td>
</tr>
<tr>
<td>4</td>
<td>Passband Freq</td>
<td>MHz</td>
<td>1815</td>
<td>2135</td>
</tr>
<tr>
<td>5</td>
<td>Passband Freq</td>
<td>MHz</td>
<td>2317.5</td>
<td>3487.5</td>
</tr>
<tr>
<td></td>
<td>Passband RL</td>
<td>dB</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rejection</td>
<td>dBc</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amplitude Flatness</td>
<td>dB</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ampl Flat Stability</td>
<td>dB</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phase Linearity</td>
<td>Deg</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Upper Stop Band</td>
<td>GHz</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vibration</td>
<td>Grms</td>
<td>46.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mech Shock/Imp</td>
<td>g</td>
<td>50 @ 0.3ms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Operating Temp</td>
<td>Deg C</td>
<td>-55</td>
<td>+65</td>
</tr>
<tr>
<td></td>
<td>Input power</td>
<td>W</td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

P/N 30281C-1, -2

Passband Filter

P/N 20521CTCD are P/N 30281C-1 and 30281C-2 are unique K- and Ku-band filters with extremely narrow passband (less than 0.025%) and wide spurious free stopband (up to 50 GHz). Such a distinctive performance is accomplished by properly combining overdamped cavities with single-mode and evanescent mode cavities. RS Microwave manufacturing experience and technological expediency are crucial to obtain excellent mechanical and thermal stability for these innovative products implementing such extreme filtering functions.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>30281C-1</th>
<th>30281C-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center Frequency (F0)</td>
<td>18.600 GHz</td>
<td>15.350 GHz</td>
</tr>
<tr>
<td>Passband</td>
<td>F0 ± 0.0002 GHz</td>
<td>F0 ± 0.0002 GHz</td>
</tr>
<tr>
<td>Passband Insertion Loss</td>
<td>≤ 8 dB (5.5 dB typ.)</td>
<td>≤ 8 dB (5.5 dB typ.)</td>
</tr>
<tr>
<td>Passband Return Loss</td>
<td>≥ 15 dB</td>
<td>≥ 15 dB</td>
</tr>
<tr>
<td>Rejection Loss at F0</td>
<td>≥ 8 dBc</td>
<td>≥ 8 dBc</td>
</tr>
<tr>
<td>Rejection Loss at F0 ± 0.01 GHz</td>
<td>≥ 20 dBc</td>
<td>≥ 25 dBc</td>
</tr>
<tr>
<td>Rejection Loss at F0 ± 0.10 GHz (up to 50 GHz)</td>
<td>≥ 60 dBc</td>
<td>≥ 60 dBc</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-20 to +85 °C</td>
<td>-20 to +85 °C</td>
</tr>
</tbody>
</table>
Using Our Website

http://www.rsmicro.com
RS Microwave Company, Inc., founded in 1981, is an internationally respected leader in RF and microwave filter technology and production. Located in Butler, NJ approximately 25 miles from New York City, we are AS9100 Certified and specialize in the design and production of quality custom filters and multiplexers to aerospace and deep space applications using state-of-the-art CAD techniques. Many parts are on the Qualified Parts List (QPL).

Filters, Multiplexers, Sub-Assemblies, and Power Amplifiers for the military market
1 MHz to 50 GHz, bandpass, notch, lowpass, highpass, and combinations
High power, small size, wide stop or pass bands and complex requirements our specialty

Ku-Band Diplexer: PN 20441CD
Passband Filters: PN 30231C-1, -2
Ridgeline™ Filters: PN 03331C-1
5-Channel Multiplexer: PN 5681C
JTIDS / MIDS Band Rejection Filters and High Power Bandpass Filters
Bandstop Filters

Last Updated on Friday, 01 April 2016 15:47
Hits: 371911
Updated Links to all Product Outline Drawings & Test Data ongoing as changes require.

<table>
<thead>
<tr>
<th>FSC</th>
<th>NIIN</th>
<th>Item Name (Link to Outline Drawings)</th>
<th>RS Part No. (Links to Outline Drawing or Test Data)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5915</td>
<td>011308250</td>
<td>FILTER, BAND SUPPRESS</td>
<td>B4028140</td>
</tr>
<tr>
<td>5915</td>
<td>0113742935</td>
<td>FILTER, BANDPASS</td>
<td>SF2015</td>
</tr>
<tr>
<td>5985</td>
<td>014442309</td>
<td>DUMMY LOAD, ELECTRIC</td>
<td>S83521-14</td>
</tr>
<tr>
<td>5985</td>
<td>014438771</td>
<td>DUMMY LOAD, ELECTRIC</td>
<td>S83521-15</td>
</tr>
<tr>
<td>5985</td>
<td>014440825</td>
<td>SWITCH, RADIO FREQ</td>
<td>S83521-5</td>
</tr>
<tr>
<td>5915</td>
<td>013634599</td>
<td>FILTER, BANDPASS</td>
<td>00353-1</td>
</tr>
<tr>
<td>5915</td>
<td>013634598</td>
<td>FILTER, BANDPASS</td>
<td>00353-2</td>
</tr>
<tr>
<td>5915</td>
<td>013634597</td>
<td>FILTER, BANDPASS</td>
<td>00581-4</td>
</tr>
<tr>
<td>5915</td>
<td>013637345</td>
<td>FILTER, BANDPASS</td>
<td>00581-5</td>
</tr>
<tr>
<td>5915</td>
<td>013637344</td>
<td>FILTER, BANDPASS</td>
<td>00581-6</td>
</tr>
<tr>
<td>5915</td>
<td>013637346</td>
<td>FILTER, BANDPASS</td>
<td>00581-7</td>
</tr>
<tr>
<td>5915</td>
<td>015222383</td>
<td>FILTER, BANDPASS</td>
<td>00801B-2</td>
</tr>
</tbody>
</table>
Use our On Line RFQ Form!
Technical Corner Archives

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb 2014</td>
<td>Multipactor comes to RS Microwave</td>
</tr>
<tr>
<td>July 2013</td>
<td>Advanced Evanescent Mode Filters Using Strongly Coupled Resonator Pairs</td>
</tr>
<tr>
<td>Feb 2013</td>
<td>Inline Pseudodirichbois Resonator Filters Using Multiple Evanescent Modes</td>
</tr>
<tr>
<td>Aug 2011</td>
<td>Parallel Coupled Line and Inter-digital Filters with Unusually Broad Upper Stop Bandwidth</td>
</tr>
<tr>
<td>July 2011</td>
<td>In-line Evanescent-mode Filter with Independent Transmission Zeros</td>
</tr>
<tr>
<td>Sept 2010</td>
<td>Wide Pass-band, Wide Stop-band, High Power, Reduced Size, Bandpass Filter</td>
</tr>
<tr>
<td>Aug 2010</td>
<td>Wide Pass-band, Wide Stop-band, High Power Bandpass Filter</td>
</tr>
<tr>
<td>Mar 2010</td>
<td>Four-channel Broadband Multiplexer</td>
</tr>
<tr>
<td>Aug 2009</td>
<td>Unique Waveguide Bandpass Filters with Wide Stop-bands</td>
</tr>
<tr>
<td>Sept 2008</td>
<td>Improving Temperature Stability of Resonators</td>
</tr>
<tr>
<td>Nov 2007</td>
<td>High Power Testing</td>
</tr>
<tr>
<td>Oct 2005</td>
<td>Wide Pass-band, Wide Stop-band, High Power Band-stop Filters</td>
</tr>
<tr>
<td>May 2004</td>
<td>RSPOCT™ to the Rescue</td>
</tr>
<tr>
<td>Feb 2004</td>
<td>Evanescent Mode Band-stop Filters</td>
</tr>
<tr>
<td>Feb 2003</td>
<td>High-pass Filter Design Using Stepped Impedance Resonators</td>
</tr>
<tr>
<td>June 2000</td>
<td>The 1030/1080 Notch Filter Story</td>
</tr>
<tr>
<td>Dec 1998</td>
<td>Quasi-optimum Filters - A Series of Articles - Part 2</td>
</tr>
<tr>
<td>Sep 1998</td>
<td>Quasi-optimum Filters - A Series of Articles</td>
</tr>
<tr>
<td>Jul 1998</td>
<td>Quasi-elliptic Notch Filters for AMPS/GSM Separation</td>
</tr>
<tr>
<td>May 1998</td>
<td>Why You Should NOT Design Your Own Filter</td>
</tr>
<tr>
<td>Mar 1998</td>
<td>Diplexer Design Using Cross Coupled Filters</td>
</tr>
<tr>
<td>Jan 1998</td>
<td>GPS Two-pass-band Filter</td>
</tr>
<tr>
<td>Dec 1997</td>
<td>Switched Filters</td>
</tr>
<tr>
<td>Nov 1997</td>
<td>Multiplexers</td>
</tr>
<tr>
<td>Sept 1997</td>
<td>Compensation of Filter-filter Interactions within Narrow Band Filter Assemblies. Application To Congested Spectrum Scenarios</td>
</tr>
<tr>
<td>Aug 1997</td>
<td>Why Choose RS Microwave above the others?</td>
</tr>
<tr>
<td>June 1997</td>
<td>Dielectric Resonator Filters with Resonated Cross Coupling</td>
</tr>
<tr>
<td>May 1997</td>
<td>Using Resonated Couplings in Filters</td>
</tr>
<tr>
<td>Feb 1997</td>
<td>Inverted Resonator Evanescent Mode Filters</td>
</tr>
<tr>
<td>Jan 1997</td>
<td>Compact High Power Notch Filters</td>
</tr>
<tr>
<td>Dec 1997</td>
<td>Simulating Leakage Effects in Lumped Element Filters</td>
</tr>
<tr>
<td>Nov 1996</td>
<td>The Art of Simulation</td>
</tr>
<tr>
<td>Oct 1996</td>
<td>Filter Subsystems</td>
</tr>
<tr>
<td></td>
<td>Blind-mate Filters</td>
</tr>
</tbody>
</table>
Our Latest R&D

Engineering Frank Gangi has been heading up development of a new switch in the Integrated Assembly Switched Notch Filter that is P/N 90711A-6.

He took some time recently to discuss the project's progress with us.

RS uses a PIN Diode Switch module in their Integrated Assembly Switched Notch Filter since 1996. Frank explained that recent development work has produced a non-hot switch and a HOT switched solution for this application. This non-HOT switch is currently being built for a "pilot run" per Frank. He confirmed that we will be testing it and our customer is expected to "quality" it in the next few months. The unit has technical specs according to Frank "designed to handle 250 watt peak (50% duty cycle) and 400 watt peak (1% duty cycle) at temperatures of -54/75°C continuously and -54/10°C for 10 min duration while drawing 100ma on the 15VDC and 10ma on the -48VDC". He added that "the switching speed is under 1usec."

When asked about the challenges faced with this project, Frank cited "working with legacy assemblies that cannot be changed forced higher constraints on the RF, DC, and Analog circuit performance parameters'.

We look forward to the positive impact this R & D will have on overall production of current and future filter assemblies. All the parts are military grade and the overall PIN switch is projected to cost less to manufacture.

Frank predicts that these innovations will also result in risk reduction and delivery time improvement.

Finally, this PIN Diode Switch module development can also be used for the P/N 65531-A1A Integrated Assembly Switched Notch Filter.

Successful completion of this project will allow for assemblies to integrate with a minor adjustment since the internal circuit senses the system it is in.

Dr. Simone Bastioli
New DML

The Microwave Theory & Techniques Society (MTT) of IEEE has honored our own Dr. Simone Bastioli with awarding him a 3-year term as Distinguished Microwave Lecturer (DML). In service to its members continuing education, the MTT Society, in conjunction with its technical coordinating committee, selects a group of Distinguished Microwave Lecturers who are recognized experts in their fields to present talks to its chapters worldwide. Simone is currently Vice-Chair of MTT-US and Passive Components Committee.

The title of Dr. Bastioli's talk is "Nonresonating Modes Do I Better?". It is based on a new concept where once inconvenient parasitic modes finally become a great asset to improve the performances of a filter. This concept is drawn from the foundation of his 2010 Ph.D thesis on waveguide technology, which with the help of Dr. Snyder, has been significantly extended to all the main microwave filter technologies, such as dielectric, evanescent, coaxial, planar SIW, and various mixed-resonator technologies. Several manufacturing examples of actual products developed here at RS Microwave will be presented with the talk in service to the practical interests of the industry audience.

Presentations are scheduled for February in Florida at the UCF, in April in Helsinki, Finland, as well as in Nis, Serbia, and in Italy, where he will return to the home of his Alma Mater, University of Perugia. Travel to Asia is planned in May, specifically China, for the ICMMT (International Conference on Microwaves and Millimeter Wave Technology) co-located with IWS 2018, as well as Sri Lanka and Hong Kong.

We are proud to see Simone join the exclusive ranks of previous DMLs, including our own Dr. Snyder!

Dedication of the
Digindakis High Power Test Lab

A formal ceremony was held last fall to dedicate our High Power Test Lab to the memory of our late engineer contractor, Michael Digindakis. The recognition of Mike's contributions and influence on our high power product development was well deserved and will continue to impact us in the future. We were honored to have his family with us for this event to offer them our thanks and appreciation of Mike's work.

Technical Conferences

EuMW 2018: This annual European event scheduled for September will be held in Madrid, Spain as part of the European Microwave Week. This is the largest event in Europe dedicated to a broad range of high frequency related topics and serves as a forum for the presentation and discussion of the most recent advances in, among other areas, passive and active components, electromagnetic field theory, theoretical and experimental developments, as well as...
RS Microwave is Committed to Quality

Our Policy & Objectives:

◆ The management and employees of RS Microwave are dedicated to producing goods and providing services that meet or exceed customer requirements, as well as continually working to improve our processes and the effectiveness thereof. Quality objectives and metrics are established for on-time delivery, customer returns, and ensuring customer satisfaction.

◆ These objectives and this policy are reviewed using the Management Review Process of the QMS, and are implemented with the direct involvement of all personnel in processes, product safety, and continual improvement activities.
WE ARE **AS9100 CERTIFIED**

RS Microwave Company, Inc. is certified to AS9100 Revision D through October 2019

Director of Quality Assurance: Eugene J Clegg, Jr.
Thank You for Allowing
RS Microwave
to be your
Filter Provider!

4/28/2018